Cited Key Resources
Download PDF
Cited Key Resources
Use the future to build the present
Cited Key Resources
Comment
Stakeholder Type
1.1Advanced AI1.2QuantumRevolution1.3UnconventionalComputing1.4AugmentedReality1.5CollectiveIntelligence2.1CognitiveEnhancement2.2HumanApplicationsof GeneticEngineering2.3HealthspanExtension2.4ConsciousnessAugmentation2.5Organoids2.6FutureTherapeutics3.1Decarbonisation3.2EarthSystemsModelling3.3FutureFoodSystems3.4SpaceResources3.5OceanStewardship3.6SolarRadiationModification3.7InfectiousDiseases4.1Science-basedDiplomacy4.2Advancesin ScienceDiplomacy4.3Foresight,Prediction,and FuturesLiteracy4.4Democracy-affirmingTechnologies5.1ComplexSystemsScience5.2Futureof Education5.3Future Economics,Trade andGlobalisation5.4The Scienceof theOrigins of Life5.5SyntheticBiology
1.1Advanced AI1.2QuantumRevolution1.3UnconventionalComputing1.4AugmentedReality1.5CollectiveIntelligence2.1CognitiveEnhancement2.2HumanApplicationsof GeneticEngineering2.3HealthspanExtension2.4ConsciousnessAugmentation2.5Organoids2.6FutureTherapeutics3.1Decarbonisation3.2EarthSystemsModelling3.3FutureFoodSystems3.4SpaceResources3.5OceanStewardship3.6SolarRadiationModification3.7InfectiousDiseases4.1Science-basedDiplomacy4.2Advancesin ScienceDiplomacy4.3Foresight,Prediction,and FuturesLiteracy4.4Democracy-affirmingTechnologies5.1ComplexSystemsScience5.2Futureof Education5.3Future Economics,Trade andGlobalisation5.4The Scienceof theOrigins of Life5.5SyntheticBiology

Appendices:

Cited Key Resources

    Each of the 28 scientific emerging topics described in the science breakthrough radar presents a carefully vetted overview by lead scientists of the current state-of-the-art in a given field and what could be important science breakthroughs in 5, 10 or 25 years. The descriptions of the emerging topics and related subfields draw upon evidence from key resources and publications from the scientific literature. This section provides a list of cited resources, organised by emerging topic and related sub-fields.
    Download RIS File of all Cited Resources

    Key Resources By Topic:

    1K. He
    2015 IEEE International Conference on Computer Vision (ICCV), 2015, p.1026.
    https://doi/10.1109/ICCV.2015.123
    2O. Vinyals
    arXiv:1708.04782 [cs], 2017.
    http://arxiv.org/abs/1708.04782
    3R. Staff
    Reuters, 2020.
    https://www.reuters.com/article/us-autonomous-waymo-idUSKBN1Z61RX
    4D. Habassis
    deepmind.com, 2022.
    https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
    5Open AI
    openai.com.
    https://openai.com/blog/chatgpt
    6J. Kaplan
    arXiv.org, 2020.
    https://doi.org/10.48550/arXiv.2001.08361
    7J. Hoffmann
    arXiv.org, 2022.
    https://doi.org/10.48550/arXiv.2203.15556
    8G. Marcus
    arXiv.org, 2020.
    https://doi.org/10.48550/arXiv.2002.06177

    1.1.1Deeper Machine Learning

    9J. Devlin
    arXiv.org, 2019.
    https://doi.org/10.48550/arXiv.1810.04805
    10T. Wolf
    Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (Online: Association for Computational Linguistics, 2020, 2020, p.38.
    https://doi.org/10.18653/v1/2020.emnlp-demos.6
    11S. Khan
    ACM Computing Surveys, Vol. 54, 2022, p.1.
    https://doi.org/10.1145/3505244
    12J. Wei
    arXiv.org, 2022.
    http://arxiv.org/abs/2206.07682
    13S. Rosenbush
    Wall Street Journal, 2023.
    https://www.wsj.com/articles/scientists-at-deepmind-and-meta-press-fusion-of-ai-biology-4b92af6f
    14Z. Ji
    ACM Computing Surveys, Vol. 55, 2023, p.1.
    https://doi.org/10.1145/3571730

    1.1.2Multimodal AI

    15H. Caesar
    Computer Vision Foundation, 2020.
    https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
    16J. N.
    Nature Medicine, Vol. 28, 2022, p.1773.
    https://doi.org/10.1038/s41591-022-01981-2
    17A. Ramesh
    arXiv.org, 2022.
    https://doi.org/10.48550/arXiv.2204.06125
    18Open AI
    arXiv.org, 2023.
    https://doi.org/10.48550/arXiv.2303.08774
    19D. Driess
    arXiv.org, 2023.
    https://doi.org/10.48550/arXiv.2303.03378
    20M. Ahn
    arXiv.org, 2022.
    http://arxiv.org/abs/2204.01691

    1.1.3 Intelligent devices

    21W. Wan
    Nature, Vol. 608, 2022, p.504.
    https://doi.org/10.1038/s41586-022-04992-8
    22L. Deng
    Proceedings of the IEEE, Vol. 108, 2020, p.485.
    https://doi.org/10.1109/JPROC.2020.2976475
    23T. Li
    IEEE Signal Processing Magazine, Vol. 37, 2020, p.50.
    https://doi.org/10.1109/MSP.2020.2975749
    24S. Höfer
    IEEE Transactions on Automation Science and Engineering, Vol. 18, 2021, p.398.
    https://doi.org/10.1109/TASE.2021.3064065

    1.1.4Alternative AI

    25M. Waldrop
    Proceedings of the National Academy of Sciences, Vol. 116, 2019, p.1074.
    https://doi.org/10.1073/pnas.1821594116
    26A. d'Avilia Garcez, L. Lamb
    Artificial Intelligence Review, 2023.
    https://doi.org/10.1007/s10462-023-10448-w
    27E. Bareinboim
    Probabilistic and Causal Inference: The Works of Judea Pearl, Vol. 36, 2022, p.507.
    https://doi.org/10.1145/3501714.3501743
    28R. van
    Nature Reviews Methods Primers, Vol. 1, 2021, p.1.
    https://doi.org/10.1038/s43586-020-00001-2

    1.2.1Quantum Communication

    5Juan Yin et al.
    Nature, Vol. 582, 2020, p.501.
    https://doi.org/10.1038/s41586-020-2401-y
    6Yu-Ao Chen et al.
    Nature, Vol. 589, 2021, p.214.
    https://doi.org/10.1038/s41586-020-03093-8
    7Jiu-Peng Chen et al.
    Nature Photonics, Vol. 15, 2021, p.570.
    https://doi.org/10.1038/s41566-021-00828-5
    8Antonio Acín et al.
    Physical Review Letters, Vol. 98, 2007, p.230501.
    https://doi.org/10.1103/PhysRevLett.98.230501

    1.2.2Quantum Computing

    9Frank Arute et al.
    Nature, Vol. 574, 2019, p.505.
    https://doi.org/10.1038/s41586-019-1666-5
    10Iris Choi, Amir Fruchtman
    Networked Quantum Information Technologies, 2016.
    https://nqit.ox.ac.uk/sites/www.nqit.ox.ac.uk/files/2016-11/NQIT%20Technical%20Roadmap.pdf

    1.2.3Quantum Sensing and Imaging

    11S. Pirandola et al.
    Nature Photonics, Vol. 12, 2018, p.724.
    https://doi.org/10.1038/s41566-018-0301-6
    12J. M. Boss et al.
    Science, Vol. 356, 2017, p.837.
    https://doi.org/10.1126/science.aam7009

    1.2.4Quantum Foundations

    13Adriana Marais et al.
    Journal of The Royal Society Interface, Vol. 15, 2018, p.20180640.
    https://doi.org/10.1098/rsif.2018.0640
    14Francesco Petruccione, Betony Adams
    AVS Quantum Science, Vol. 2, 2020, p.22901.
    https://doi.org/10.1116/1.5135170
    15Francesco Campaioli et al.
    Physical Review Letters, Vol. 118, 2017, p.150601.
    https://doi.org/10.1103/PhysRevLett.118.150601
    16Betony Adams
    Physics World, 2021.
    https://physicsworld.com/do-quantum-effects-play-a-role-in-consciousness/
    17Na Li et al.
    Anesthesiology, Vol. 129, 2018, p.271.
    https://doi.org/10.1097/ALN.0000000000002226
    18Jeri A. Sechzer et al.
    Biological Psychiatry, Vol. 21, 1986, p.1258.
    https://doi.org/10.1016/0006-3223(86)90308-2

    1.3.1Neuromorphic Computing

    1C. D. Schuman
    Nature Computational Science, Vol. 2, 2022, p.10.
    https://doi.org/10.1038/s43588-021-00184-y.
    2D. V. Christensen
    Neuromorphic Computing and Engineering, Vol. 2, 2022, p.22501.
    https://doi.org/10.1088/2634-4386/ac4a83.
    3M. Mikaitis
    Frontiers in Neuroscience, Vol. 12, 2018.
    https://www.frontiersin.org/articles/10.3389/fnins.2018.00105.
    4F. Akopyan
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34: 1537, Vol. 34, 2015, p.1537.
    https://doi.org/10.1109/TCAD.2015.2474396.
    5G. Orchard
    ArXiv.org, 2021.
    https://doi.org/10.48550/arXiv.2111.03746.
    6S. Kumar
    Nature Reviews Materials, Vol. 7, 2022, p.575.
    https://doi.org/10.1038/s41578-022-00434-z.

    1.3.2Organoid Intelligence

    7B. Koo
    Molecules and Cells, Vol. 42, 2019, p.617.
    https://doi.org/10.14348/molcells.2019.0162.
    8L. Smirnova
    Frontiers in Science, 2023.
    https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2023.1017235.
    9S. M.
    Prog Brain Res., Vol. 130, 2001, p.49.
    doi: 10.1016/s0079-6123(01)30005-5.
    10B. J.
    bioRxiv.org, 2021.
    https://doi.org/10.1101/2021.12.02.471005.
    11H. Cai
    bioRxiv.org, 2023.
    https://doi.org/10.1101/2023.02.28.530502.
    12M. Hofer
    Nature Reviews Materials, Vol. 6, 2021, p.402.
    https://doi.org/10.1038/s41578-021-00279-y.
    13I. Hyun
    Brain Research, Vol. 1732, 2020, p.146653.
    https://doi.org/10.1016/j.brainres.2020.146653.

    1.3.3Cellular Computing

    14H. Kim
    Proceedings of the National Academy of Sciences, Vol. 116, 2019, p.7214.
    https://doi.org/10.1073/pnas.1821740116.
    15L. Grozinger
    Nature Communications, Vol. 10, 2019, p.5250.
    https://doi.org/10.1038/s41467-019-13232-z.
    16D. V.
    Proceedings of the National Academy of Sciences, Vol. 113, 2016, p.2591.
    https://doi.org/10.1073/pnas.1510825113.
    17J. Macia
    PLOS Computational Biology, Vol. 12, 2016.
    https://doi.org/10.1371/journal.pcbi.1004685.
    18X. Li
    Nature Communications, Vol. 12, 2021, p.3139.
    https://doi.org/10.1038/s41467-021-23336-0.
    19M. E. Afkhami
    Science, Vol. 380, 2023, p.798.
    DOI:10.1126/science.adi1594.
    20A. Goñi-Moreno
    Frontiers in Bioengineering and Biotechnology, Vol. 7, 2019.
    https://www.frontiersin.org/articles/10.3389/fbioe.2019.00040.

    1.3.4Optical Computing

    21S. Y. Siew
    Journal of Lightwave Technology, Vol. 39, 2021, p.4374.
    https://doi.org/10.1109/JLT.2021.3066203.
    22The Economist
    The Economist, 2022.
    https://www.economist.com/science-and-technology/2022/12/20/artificial-intelligence-and-the-rise-of-optical-computing.
    23J. Eli Bourassa
    Quantum, Vol. 5, 2021, p.392.
    https://doi.org/10.22331/q-2021-02-04-392.
    24B. J. Shastri
    Nature Photonics, Vol. 15, 2021, p.102.
    https://doi.org/10.1038/s41566-020-00754-y.
    25J. Mao
    Advanced Optical Materials, Vol. 7, 2019, p.1900766.
    https://doi.org/10.1002/adom.201900766.
    26D. R. Solli, B. Jalali
    Nature Photonics, Vol. 9, 2015, p.704.
    https://doi.org/10.1038/nphoton.2015.208.
    1Deloitte Insights
    https://www2.deloitte.com/us/en/insights/topics/emerging-technologies/digital-reality-technical-primer.html
    2Ellysse Dick
    https://itif.org/publications/2021/08/30/promise-immersive-learning-augmented-and-virtual-reality-potential
    3Alexandra D. Kaplan et al.
    Human Factors, Vol. 63, 2021, p.706.
    https://doi.org/10.1177/0018720820904229
    4Luís Fernando de Souza Cardoso, Flávia Cristina Martins, Queiroz Mariano, Ezequiel Roberto Zorzal
    Computers & Industrial Engineering, Vol. 139, 2020, p.106159.
    https://doi.org/10.1016/j.cie.2019.106159
    5India – EN
    2021.
    https://www.bcg.com/en-in/publications/2020/unleashing-the-power-of-data-with-iot-and-augmented-reality
    6CB Insights Research
    2022.
    https://www.cbinsights.com/research/metaverse-market-map/

    1.4.1Augmented reality hardware

    12Jianghao Xiong et al.
    Light: Science & Applications, Vol. 10, 2021, p.216.
    https://doi.org/10.1038/s41377-021-00658-8
    13Kodai Matsuhashi, Toshiki Kanamoto, Atsushi Kurokawa
    Sensors, Vol. 20, 2020, p.1446.
    https://doi.org/10.3390/s20051446
    14Anton S. Kaplanyan et al.
    ACM Transactions on Graphics, 38, Vol. 212, 2019, p.1.
    https://doi.org/10.1145/3355089.3356557
    15Ismo Rakkolainen, Antti Sand, Roope Raisamo
    IEEE International Symposium on Multimedia, Vol. 94, 2019.
    https://doi.org/10.1109/ISM46123.2019.00022
    16Mojo Vision
    https://www.mojo.vision/mojo-lens

    1.4.2Augmented experiences

    17Fazliaty Edora Fadzli et al.
    IOP Conference Series: Materials Science and Engineering, Vol. 864, 2020, p.12081.
    https://doi.org/10.1088/1757-899X/864/1/012081
    18Zhizhong Kang et al.
    ISPRS International Journal of Geo-Information, Vol. 9, 2020, p.330.
    https://doi.org/10.3390/ijgi9050330
    19Yulyani Arifin, Thomas Galih Sastria, Edo Barlian
    Procedia Computer Science, Vol. 135, 2018, p.648.
    https://doi.org/10.1016/j.procs.2018.08.221
    20Chandan K. Sahu, Crystal Young, Rahul Rai
    International Journal of Production Research, Vol. 59, 2021, p.4903.
    https://doi.org/10.1080/00207543.2020.1859636

    1.4.3AR platforms

    21Melike Erol-Kantarci, Sukhmani Sukhmani
    Social Informatics and Telecommunications Engineering. Lecture Notes of the Institute for Computer Sciences, Vol. 169, 2018.
    https://doi.org/10.1007/978-3-319-74439-1_15
    22ETSI COMS TEAM
    https://www.etsi.org/committee?id=1740.
    23Daniel Castro
    2022.
    https://itif.org/publications/2022/02/28/content-moderation-multi-user-immersive-experiences-arvr-and-future-online

    1.4.4Human factors of AR

    24Echo Chambers
    https://reutersinstitute.politics.ox.ac.uk/echo-chambers-filter-bubbles-and-polarisation-literature-review
    25Alyssa N. Saiphoo, Zahra Vahedi
    Computers in Human Behavior, Vol. 101, 2019, p.259.
    https://doi.org/10.1016/j.chb.2019.07.028
    26Alexandra Krugliak, Alex Clarke
    Scientific Reports, Vol. 12, 2022, p.2291.
    https://doi.org/10.1038/s41598-022-06296-3
    27Christine Vinci et al.
    Clinical Psychology: Science and Practice, Vol. 27, 2020, p.12357.
    https://doi.org/10.1111/cpsp.12357
    1Thomas W. Malone, A. Williams Woolley
    The Cambridge Handbook of Intelligence, 2020.
    https://doi.org/10.1017/9781108770422.033
    2M. Ryan et al.
    2020.
    https://www.nesta.org.uk/report/using-collective-intelligence-solve-public-problems/
    3K. Peach et al.
    https://acceleratorlabs.undp.org/content/acceleratorlabs/en/home/library/Collective-Intelligence-Sustainable-Development-Getting-Smarter-Together.html

    1.5.1Large-scale collaboration

    8L. See
    Frontiers in Earth Science, Vol. 7, 2019.
    https://www.frontiersin.org/article/10.3389/feart.2019.00044
    10A. Berditchchevskaia, P. Baeck
    https://www.nesta.org.uk/report/future-minds-and-machines/
    11Liang Tan et al.
    Computer Standards & Interfaces, Vol. 76, 2021, p.103517.
    https://doi.org/10.1016/j.csi.2021.103517
    12A. Skarzauskiene, M. Maciuliene, D. Bar
    Proceedings of the Future Technologies Conference, Vol. 3, 2021, p.10183.
    https://doi.org/10.1007/978-3-030-63092-8_70

    1.5.2Smarter teams

    13E. Bernstein, J. Shore, D. Lazer
    Proceedings of the National Academy of Sciences, Vol. 115, 2018, p.8734.
    https://doi.org/10.1073/pnas.1802407115
    14I. Aggarwal et al.
    Frontiers in Psychology, Vol. 10, 2019.
    https://www.frontiersin.org/article/10.3389/fpsyg.2019.00112
    15E. Glikson et al.
    Frontiers in Psychology, Vol. 10, 2019.
    https://www.frontiersin.org/article/10.3389/fpsyg.2019.00814
    16P. Gupta, A. Williams Woolley
    Proceedings of the ACM on Human-Computer Interaction, 2, Vol. 62, 2018, p.1.
    https://doi.org/10.1145/3274331
    17P. Gupta et al.
    Proceedings of Collective Intelligence, 2019.
    https://ci.acm.org/2019/assets/proceedings/CI_2019_paper_7.pdf
    18L. Metcalf, D.A. Askay, L.B. Rosenberg
    California Management Review, Vol. 61, 2019, p.84.
    https://doi.org/10.1177/0008125619862256
    19Michael L. Barnett et al.
    JAMA Network Open, Vol. 2, 2019, p.190096.
    https://doi.org/10.1001/jamanetworkopen.2019.0096

    1.5.3Collective cognition

    20I. Momennejad
    Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 377, 2022, p.20200315.
    https://doi.org/10.1098/rstb.2020.0315
    21C. Riedl et al.
    Proceedings of the National Academy of Sciences, Vol. 118, 2021, p.2005737118.
    https://doi.org/10.1073/pnas.2005737118
    22T. Millhouse, M. Moses, M. Mitchell
    2021.
    https://doi.org/10.48550/arXiv.2112.06864

    1.5.4Human-computer interaction

    23M. Beaudouin-Lafon, S. Bødker, W.E. Mackay
    ACM Transactions on Computer-Human Interaction, Vol. 28, 2021, p.162114.
    https://doi.org/10.1145/3468505
    24J. Koch et al.
    Proceedings of the ACM on Human-Computer Interaction, Vol. 4, 2020, p.162087.
    https://doi.org/10.1145/3392850
    25N.C. Rabinowitz et al.
    2018.
    https://doi.org/10.48550/arXiv.1802.07740
    1M. Dresler
    ACS Chem Neurosci, Vol. 10, 2019, p.1137.
    https://doi.org/10.1021/acschemneuro.8b00571.
    2C. M. Giattino
    Proceedings of the 2019 AAAI/ACM Conference on AI Ethics and Society, 2019, p.397.
    https://doi.org/10.1145/3306618.3314269.

    2.1.1Fundamentals of cognition

    3A. F. Kramer
    Current Directions in Psychological Science, Vol. 11, 2002, p.173.
    https://doi.org/10.1111/1467-8721.00194.
    4N. Barzilai
    Cell Metab., Vol. 23, 2016, p.1060.
    https://doi.org/10.1016/j.cmet.2016.05.011.
    5I. Bidzan-Bluma, M. Lipowska
    Int J Environ Res Public Health, Vol. 15, 2018, p.800.
    https://doi.org/10.3390/ijerph15040800.
    6R. Goldthorpe
    Front Neurol, Vol. 11, 2020, p.575075.
    https://doi.org/10.3389/fneur.2020.575075.
    7A. Chopin
    Curr Opin Psychol., Vol. 29, 2019, p.168.
    https://doi.org/10.1016/j.copsyc.2019.03.004.
    8L. Colzato
    Neuroscientist, Vol. 322, 2021.
    https://doi.org/10.1177/1073858420945971.

    2.1.2Brain monitoring

    9P. Pinti
    Jpn Psychol Res, Vol. 60, 2018, p.347.
    https://doi.org/10.1111/jpr.12206.
    10J. Glaser
    eNeuro, Vol. 7, 2020.
    https://doi.org/10.1523/ENEURO.0506-19.2020.
    11E. Baeg
    Neuron, Vol. 40, 2003, p.177.
    https://doi.org/10.1016/s0896-6273(03)00597-x.
    12F. Willett
    bioRxiv, 2023.
    https://doi.org/10.1101/2023.01.21.524489.
    13J. Tang
    Nat Neurosci, Vol. 26, 2023, p.858.
    https://doi.org/10.1038/s41593-023-01304-9.

    2.1.3Neuromodulation systems

    14D. Antonenko
    Scientific Reports, Vol. 9, 2019, p.2273.
    https://doi.org/10.1038/s41598-019-38630-7
    15T. D. Kim
    Experimental Neurobiology, Vol. 28, 2019, p.1.
    https://doi.org/10.5607/en.2019.28.1.1.
    16A. Sofía
    Nature Communications, Vol. 13, 2022, p.7707.
    https://doi.org/10.1038/s41467-022-34510-3.
    17J. Hamzelou
    Technology Review, 2022.
    https://www.technologyreview.com/2022/09/06/1059032/memory-prosthesis-damaged-brains/.
    18S. Greengard
    Communications of the ACM, Vol. 65, 2022, p.18.
    https://doi.org/10.1145/3535193.
    19X. Strakosas
    Science, Vol. 379, 2023, p.795.
    https://doi.org/10.1126/science.adc9998.
    20R. Levy
    Reuters, 2023.
    https://www.reuters.com/science/elon-musks-neuralink-gets-us-fda-approval-human-clinical-study-brain-implants-2023-05-25/
    21ClinicalTrials.gov
    ClinicalTrials.gov, 2022.
    https://clinicaltrials.gov/ct2/show/NCT03834857
    22A. Paulk
    Nature Neuroscience, Vol. 25, 2022, p.252.
    https://www.nature.com/articles/s41593-021-00997-0.

    2.1.4Exogenous cognition

    23A. Zador
    Nature Communications, Vol. 14, 2023, p.1597.
    https://www.nature.com/articles/s41467-023-37180-x.
    24J. Song
    AAAS (2021), 2021.
    https://www.aaas.org/news/robotic-thumb-changes-how-brain-sees-hand.
    1J. Couzin-Frankel
    Science, 6.
    https://www.science.org/content/article/cutting-edge-crispr-gene-editing-appears-safe-three-cancer-patients.
    2Z. Liu
    Molecular Cancer, Vol. 22, 2023, p.35.
    https://doi.org/10.1186/s12943-023-01738-6.
    3R. Stein
    NPR, 13.
    https://www.npr.org/sections/health-shots/2022/12/13/1140384354/crispr-improves-cancer-immunotherapy-car-t-cell.
    4H. Ledford
    Nature, Vol. 588, 2020, p.383.
    https://doi.org/10.1038/d41586-020-03476-x.
    5H. Frangoul
    New England Journal of Medicine, Vol. 384, 2021, p.252.
    https://doi.org/10.1056/NEJMoa2031054.
    6V. Pharmaceuticals
    clinicaltrials.gov, 2022.
    https://clinicaltrials.gov/ct2/show/NCT03745287.

    2.2.1Diagnostics

    7G. Costain
    CMAJ, Vol. 193, 2021.
    https://doi.org/10.1503/cmaj.210549.
    8R. Ding
    International Journal of Molecular Sciences, Vol. 22, 2021, p.4842.
    https://doi.org/10.3390/ijms22094842.
    9J. E.
    New England Journal of Medicine, Vol. 386, 2022, p.700.
    https://doi.org/10.1056/NEJMc2112090.
    10N. Human
    Genome.gov.
    https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost.
    11V. Marx
    Nat Methods, Vol. 20, 2023, p.6.
    https://doi.org/10.1038/s41592-022-01730-w.
    12J. Wosen
    STAT, 22.
    https://www.statnews.com/2023/03/22/euan-ashley-stanford-genome-sequencing/.

    2.2.2Next generation editors and delivery

    13S. Suh
    Proceedings of the National Academy of Sciences, Vol. 119, 2022.
    https://doi.org/10.1073/pnas.2210104119.
    14M. Labant
    Genetic Engineering and Biotechnology News, 7.
    https://www.genengnews.com/topics/genome-editing/non-crispr-gene-editing-platforms-make-the-cut-or-avoid-making-it/.
    15F. Tenjo-Castaño
    Biochemistry, 21.
    https://doi.org/10.1021/acs.biochem.2c00379.
    16S. E.
    Nature, Vol. 571, 2019, p.219.
    https://doi.org/10.1038/s41586-019-1323-z.
    17Q. Yuan
    Nature Communications, Vol. 13, 2022, p.2771.
    https://doi.org/10.1038/s41467-022-30514-1.
    18F. Sinclair
    Drug Delivery and Translational Research, Vol. 13, 2023, p.1500.
    https://doi.org/10.1007/s13346-023-01320-z.
    19A. Zamecnik
    Pharmaceutical Technology, 3.
    https://www.pharmaceutical-technology.com/features/crispr-gene-therapies-is-2023-a-milestone-year-in-the-making/.
    20H. Ledford
    Nature, 8.
    https://www.nature.com/articles/d41586-020-03476-x.
    21Y. Ma
    Stem Cell Research & Therapy, Vol. 113, 2022, p.353.
    https://doi.org/10.1186/s13287-022-03036-2.

    2.2.3Engineered organism and AI-based tools

    22J. Kaiser
    Science, Vol. 376, 2021, p.1034.
    https://www.science.org/content/article/better-crispr-another-way-fix-gene-problems-may-be-safer-and-more-versatile.
    23D. M. Ichikawa
    Nature Biotechnology, Vol. 26, 2023, p.1.
    https://doi.org/10.1038/s41587-022-01624-4.
    24K. Mochida
    Frontiers in Plant Science, Vol. 9, 2018.
    https://doi.org/10.3389/fpls.2018.01770.
    25K. Saha
    Nature, Vol. 592, 2021, p.195.
    https://doi.org/10.1038/s41586-021-03191-1.
    26I. Sample
    The Guardian, 3.
    https://www.theguardian.com/science/2022/aug/03/scientists-create-worlds-first-synthetic-embryos.

    2.2.4Alternatives to direct gene editing

    27J. K.
    Cell, Vol. 184, 2021, p.2503.
    https://www.sciencedirect.com/science/article/pii/S0092867421003536.
    28R. Trager
    Chemistry World, 21.
    https://www.chemistryworld.com/news/the-launch-of-a-new-field-precision-microbiome-editing/4017260.article.
    29Z. Wang
    Nature, Vol. 472, 2011, p.57.
    https://doi.org.10.1038/nature09922.
    30J. M.
    Science Advances, Vol. 8, 2022.
    https://doi.org/10.1126/sciadv.abm5091.
    31K. Krawczyk
    Science, Vol. 368, 2020, p.993.
    https://doi.org/10.1126/science.aau7187.
    32L. Zhang
    Frontiers in Microbiology, Vol. 12, 2021.
    https://doi.org/10.3389/fmicb.2021.766364.
    1B. Kennedy
    Cell, Vol. 159, 2014, p.709.
    https://doi.org/10.1016/j.cell.2014.10.039.
    2S. Jay
    JAMA, Vol. 320, 2018, p.1323.
    https://doi.org/10.1001/jama.2018.12621.

    2.3.1Fundamental Geroscience

    3C. Debès
    Nature, Vol. 616, 2023, p.814.
    https://doi.org/10.1038/s41586-023-05922-y.
    4C. López-Otín
    Cell, Vol. 186, 2023, p.243.
    https://doi.org/10.1016/j.cell.2022.11.001.
    5Z. Zhang
    Biorxiv.org, 2023.
    https://www.biorxiv.org/content/10.1101/2023.05.04.539405v1.article-metrics.
    6T. Wilmanski
    Nat Metab, Vol. 3, 2021, p.274.
    https://doi.org/10.1038/s42255-021-00348-0.

    2.3.2Diagnostics, hallmarks and biomarkers

    7D. W
    eLife, Vol. 11, 2022.
    https://doi.org/10.7554/eLife.73420.
    8W. Chan
    The Guardian, 2022.
    https://www.theguardian.com/science/2022/jun/13/biological-age-startups-why.
    9S. Ahadi
    Nature Medicine, Vol. 26, 2020, p.83.
    https://doi.org/10.1038/s41591-019-0719-5.
    10A. Zenin
    Communications Biology, Vol. 2, 2019, p.1.
    https://doi.org/10.1038/s42003-019-0290-0.
    11C. Nie
    Cell Rep, Vol. 38, 2022, p.110459.
    doi:10.1016/j.celrep.2022.110459.
    12Y. Ella
    Nat Med, Vol. 29, 2023, p.1221.
    doi:10.1038/s41591-023-02296-6.
    13V. Smer-Barreto
    Nat Commun, Vol. 14, 2023, p.3445.
    https://doi.org/10.1038/s41467-023-39120-1.
    14A. Zhavoronkov
    Ageing Research Reviews, Vol. 49, 2019, p.49.
    https://doi.org/10.1016/j.arr.2018.11.003.
    15C. Nie
    Cell Reports, Vol. 38, 2022, p.110459.
    https://doi.org/10.1016/j.celrep.2022.110459.
    16L. Drew
    Nature, Vol. 601, 2022.
    https://doi.org/10.1038/d41586-022-00077-8.
    17J. Yang
    Cell, Vol. 186, 2023, p.305.
    https://doi.org/10.1016/j.cell.2022.12.027.

    2.3.3Healthspan therapies and interventions

    18L. Fontana
    Mechanisms of Ageing and Development, Vol. 176, 2018, p.19.
    https://doi.org/10.1016/j.mad.2018.10.005.
    19R. G. Jones
    The Journal of Physiology, Vol. 601, 2023, p.763.
    https://doi.org/10.1113/JP283836.
    20J. B. Mannick
    Science Translational Medicine, Vol. 6, 2014, p.268.
    https://doi.org/10.1126/scitranslmed.3009892.
    21Q. Xue
    Aging, Vol. 8, 2016, p.769.
    https://doi.org/10.18632/aging.100929.
    22T. Weichhart
    Gerontology, Vol. 64, 2017, p.127.
    https://doi.org/10.1159/000484629.
    23C. Ross
    Aging, Vol. 7, 2015, p.964.
    https://doi.org/10.18632/aging.100843.
    24Z. Dave, R. Strong
    Experimental Gerontology, Vol. 176, 2023, p.112166.
    https://doi.org/10.1016/j.exger.2023.112166.
    25C. A. Bannister
    Diabetes, Obesity and Metabolism, Vol. 16, 2014, p.1165.
    https://doi.org/10.1111/dom.12354.
    26J. Leth, D. Bakalua, M. Scheibye-Knudsen
    Frontiers in Aging, Vol. 3, 2022.
    https://www.frontiersin.org/articles/10.3389/fragi.2022.820215.

    2.3.4Lifespan extension and rejuvenation

    26J. Leth, D. Bakalua, M. Scheibye-Knudsen
    Frontiers in Aging, Vol. 3, 2022.
    https://www.frontiersin.org/articles/10.3389/fragi.2022.820215.
    27T. V. Pyrkov
    Nature Communications, Vol. 12, 2021, p.2765.
    https://doi.org/10.1038/s41467-021-23014-1.
    28Z. Zhang
    bioRxiv.org, 2023.
    doi: https://doi.org/10.1101/2023.05.04.539405.
    29X. Tian
    Cell, Vol. 177, 2019, p.622.
    doi:10.1016/j.cell.2019.03.043.
    30Y. Lu
    Nature, Vol. 588, 2020, p.124.
    https://doi.org/10.1038/s41586-020-2975-4.
    31K. C. Browder
    Nature Aging, Vol. 2, 2022, p.243.
    https://doi.org/10.1038/s43587-022-00183-2.
    32A. da Silva-Junior
    Stem Cell Res Ther, Vol. 12, 2021, p.69.
    https://doi.org/10.1186/s13287-020-02130-7
    33Y. Lu
    Nature, Vol. 588, 2020, p.124.
    https://doi.org/10.1038/s41586-020-2975-4.
    34J. Yang
    Cell, Vol. 186, 2023, p.305.
    https://doi.org/10.1016/j.cell.2022.12.027.
    36R. G. Lee
    Circulation, Vol. 147, 2023, p.242.
    https://doi.org/10.1161/CIRCULATIONAHA.122.062132.
    37C. C. Macip
    bioRxiv.org, 2023.
    https://doi.org/10.1101/2023.01.04.522507.
    38J. Hamzelou
    MIT Technology Review, 2023.
    https://www.technologyreview.com/2023/05/31/1073750/new-longevity-state-rhode-island/
    1O. Ferrante
    BiorXiv.org, 2023.
    https://www.biorxiv.org/content/10.1101/2023.06.23.546249v1.

    2.4.1Consciousness assessment

    2P. Gui
    Nature Neuroscience, Vol. 23, 2020, p.761.
    https://doi.org/10.1038/s41593-020-0639-1.
    3P. Jain
    Brain Commun., Vol. 5, 2023.
    https://doi.org/10.1093/braincomms/fcad094.
    4A. Castegnaro
    Hippocampus, Vol. 32, 2022, p.660.
    https://doi.org/10.1002/hipo.23458.
    5P. Jain
    Brain Commun., Vol. 5, 2023.
    https://doi.org/10.1093/braincomms/fcad094.
    6M. Lee
    Nat Commun, Vol. 13, 2022, p.1064.
    https://doi.org/10.1038/s41467-022-28451-0.
    7L. Chang
    Proceedings of the National Academy of Sciences, Vol. 114, 2017, p.3258.
    .org/10.1073/pnas.1620764114.
    8J. Tassiere
    Science Advances, Vol. 8, 2022.
    https://doi.org/10.1126/sciadv.abl5547.
    9A. Seth
    Nat Rev Neurosci, Vol. 23, 2022, p.439.
    https://doi.org/10.1038/s41583-022-00587-4.

    2.4.2Cognitive capacity enhancement

    10L. Winerman
    apa.org, 2013.
    https://www.apa.org/monitor/2013/03/smarter.
    11A. Rudenko
    Neuropharmacology, Vol. 80, 2014, p.70.
    https://doi.org/10.1016/j.neuropharm.2014.01.043.
    12P. Bertrand
    Frontiers in Robotics and AI, Vol. 5, 2018.
    https://doi.org/10.3389/frobt.2018.00026.
    13E. Krokos
    Virtual Reality, Vol. 23, 2019, p.1.
    https://doi.org/10.1007/s10055-018-0346-3.
    14E. Walsh, D. A. Oakley
    Neuroscience of Consciousness, Vol. 2022, 2022.
    https://doi.org/10.1093/nc/niac009.
    15F. Callaway
    Proc Natl Acad Sci., Vol. 119, 2022.
    https://doi.org/10.1073/pnas.2117432119.

    2.4.3Consciousness-augmenting interventions

    16F. Napoletano
    Front Psychiatry, Vol. 11, 2020.
    https://doi.org/10.3389/fpsyt.2020.546796
    17R. Hardy
    Nature.com, 2023.
    https://www.nature.com/articles/d41586-023-02093-8.
    18A. Thibaut
    Neurology, Vol. 82, 2014, p.1112.
    https://doi.org/10.1212/WNL.0000000000000260.
    19F. Frohlich
    Curr Behav Neurosci Rep., Vol. 8, 2021, p.51.
    https://doi.org/10.1007/s40473-021-00227-8.
    20K. Scangos
    Nature Medicine, Vol. 27, 2021, p.1696.
    https://doi.org/10.1038/s41591-021-01480-w.
    21M. M. Shanechi
    Nature Neuroscience, Vol. 22, 2019, p.1554.
    https://doi.org/10.1038/s41593-019-0488-y.

    2.4.4Beyond-human consciousness

    22H. H.
    Artificial General Intelligence (ed. Bas Steunebrink, Pei Wang and Ben Goertzel), 2016, p.305.
    https://doi.org/10.1007/978-3-319-41649-6_31.
    23M. Kohda
    PLOS Biology, Vol. 17, 2019.
    https://doi.org/10.1371/journal.pbio.3000021.
    24A. Lavazza, M. Massimini
    Journal of Medical Ethics, Vol. 44, 2018, p.606.
    https://doi.org/10.1136/medethics-2017-104555.
    25D. Nelidova
    Science, Vol. 368, 2020, p.1108.
    https://doi.org/10.1126/science.aaz5887.
    26J. Hameed
    IEEE 9th International Conference on Cybernetic Intelligent Systems, 2010, p.1.
    https://doi.org/10.1109/UKRICIS.2010.5898141.
    27S. D. Novich, D. Eagleman
    Experimental Brain Research, Vol. 233, 2015, p.2777.
    https://doi.org/10.1007/s00221-015-4346-1.
    28C. S.
    Front. Neurorobot., Vol. 15, 2021.
    https://doi.org/10.3389/fnbot.2021.656943.
    29L. Jiang
    Sci Rep, Vol. 9, 2019, p.6115.
    https://doi.org/10.1038/s41598-019-41895-7.
    30E. Hildt
    Front. Neurosci, Vol. 13, 2019.
    https://doi.org/10.3389/fnins.2019.01177.
    1B. Paulsen et al.
    Nature, Vol. 602, 2022, p.268.
    https://doi.org/10.1038/s41586-021-04358-6
    2F. Cugola et al.
    Nature, Vol. 534, 2016, p.267.
    https://doi.org/10.1038/nature18296
    3C.A. Trujillo et al.
    Cell Stem Cell, Vol. 25, 2019, p.558.
    https://doi.org/10.1016/j.stem.2019.08.002
    4L. Liu et al.
    J Transl Med, Vol. 19, 2021, p.40.
    https://doi.org/10.1186/s12967-020-02677-2
    5A. Smith, C. Kuo
    Nat Med, Vol. 23, 2017, p.1399.
    https://doi.org/10.1038/nm.4454
    6Y. Li et al.
    Cell Regeneration, Vol. 9, 2020, p.21.
    https://doi.org/10.1186/s13619-020-00059-z
    7E. Berishvili et al.
    Transpl Int, Vol. 34, 2021, p.1588.
    https://doi.org/10.1111/tri.13988
    8G. Rossi, A. Manfrin, M.P. Lutolf
    Nat Rev Genet, Vol. 19, 2018, p.671.
    https://doi.org/10.1038/s41576-018-0051-9
    9H. Clevers
    Cell, Vol. 165, 2016, p.1586.
    Https://doi.org/10.1016/j.cell.2016.05.082
    10M. Hofer, M.P. Lutolf
    Nat Rev Mater, Vol. 6, 2021, p.402.
    https://doi.org/10.1038/s41578-021-00279-y
    11S. Velasco, B. Paulsen, P. Arlotta
    Annual Review of Neuroscience, Vol. 43, 2020, p.375.
    https://www.annualreviews.org/doi/10.1146/annurev-neuro-070918-050154.
    12National Academies of Sciences, Engineering and Medicine
    https://doi.org/10.17226/26078

    2.5.1Foundational research

    13S. Kanton et al.
    Nature, Vol. 574, 2019, p.418.
    https://doi.org/10.1038/s41586-019-1654-9
    14C.A. Trujillo et al.
    Science, Vol. 12, 2021, p.371.
    https://doi.org/10.1126/science.aax2537
    15H. Clevers
    Nature Reviews Molecular Cell Biology, Vol. 21, 2020, p.355.
    https://doi.org/10.1038/s41580-020-0258-4
    16C.A. Trujillo, A.R. Muotri
    Trends Mol Med, Vol. 24, 2018, p.982.
    https://doi.org/10.1016/j.molmed.2018.09.005
    17Y.J. Kang, H. Cho
    Organoid, Vol. 1, 2021, p.5.
    https://doi.org/10.51335/organoid.2021.1.e5
    18D.J. Steinberg et al.
    EMBO Molecular Biology, Vol. 13, 2021, p.13610.
    https://doi.org/10.15252/emmm.202013610

    2.5.2Hybrid organoids

    20National Academies of Sciences, Engineering and Medicine
    https://doi.org/10.17226/26078
    21L. Schley
    https://www.discovermagazine.com/mind/meet-the-scientists-connecting-lab-grown-mini-brains-to-robots
    22Johns Hopkins Bloomberg School of Public Health
    https://caat.jhsph.edu/programs/oi/.
    23University of California Television
    https://youtu.be/nohbx-TXsyk.
    24M. Korody et al.
    Stem Cells and Development, Vol. 30, 2021, p.177.
    https://doi.org/10.1089/scd.2021.0001

    2.5.3Translation and personalised organoids

    25A. Smith, C. Kuo
    Nat Med, Vol. 23, 2017, p.1399.
    https://doi.org/10.1038/nm.4454
    26W.C. Peng, L.J. Kraaier, T.A. Kluiver
    Exp Mol Med, Vol. 53, 2021, p.1512.
    https://doi.org/10.1038/s12276-021-00579-x
    27B. Herpers et al.
    Nat Cancer, Vol. 3, 2022, p.418.
    https://doi.org/10.1038/s43018-022-00359-0

    2.5.4Enabling technologies

    2.6.1Electrical therapies

    9K. Scangos et al.
    Nature Medicine, Vol. 27, 2021, p.1696.
    https://doi.org/10.1038/s41591-021-01480-w
    10
    https://www.businesswire.com/news/home/20220504005281/en/Synchron-Announces-Enrollment-of-First-Patient-in-U.S.-Endovascular-Brain-Computer-Interface-Study-COMMAND-in-Patients-With-Severe-Paralysis.
    11C. Adaikkan et al.
    Neuron.
    https://doi.org10.1016/j.neuron.2019.04.011
    12Chieh-Hsin Lee, Fabrizio Giuliani
    Frontiers in Immunology, Vol. 10, 2019, p.1696.
    https://doi.org/10.3389/fimmu.2019.01696
    13Yin Long et al.
    ACS Nano, Vol. 12, 2018, p.12533.
    https://doi.org/10.1021/acsnano.8b07038
    14Murugan Nirosha et al.
    Vol. 28, 2022, p.264.
    https://doi.org/10.1126/sciadv.abj2164

    2.6.2Data-led therapies

    15
    The Economist, 2022.
    https://www.economist.com/technology-quarterly/2022/05/02/some-health-apps-are-able-not-just-to-diagnose-diseases-but-also-to-treat-them
    16Riccardo De Bin et al.
    Briefings in Bioinformatics, Vol. 21, 2020, p.1904.
    https://doi.org/10.1093/bib/bbz136
    17Thomas Davenport, Ravi Kalakota
    Future Healthcare Journal, Vol. 6, 2019, p.94.
    https://doi.org/10.7861/futurehosp.6-2-94
    18Silvana Secinaro et al.
    BMC Medical Informatics and Decision Making, Vol. 21, 2021, p.125.
    https://doi.org/10.1186/s12911-021-01488-9
    19George Bazoukis et al.
    Cell reports: Medicine, Vol. 3, 2022, p.100485.
    https://doi.org/10.1016/j.xcrm.2021.100485

    2.6.3Cell, gene, biomimetic and nucleic acid therapies

    21Haydar Frangoul et al.
    New England Journal of Medicine, Vol. 384, 2021, p.252.
    https://www.nejm.org/doi/full/10.1056/NEJMoa2031054
    22Michael Le Page
    New Scientist, 2022.
    https://www.newscientist.com/article/2323437-pancreatic-cancer-vaccine-what-to-know-about-early-promising-results/
    23Hengrui Liu et al.
    Nature Communications, Vol. 13, 2022, p.1891.
    https://doi.org/10.1038/s41467-022-29413-2
    24Cochrane.org
    2021.
    https://www.cochrane.org/news/remdesivir-treatment-covid-19
    25Britton Boras et al.
    Nature Communications, Vol. 12, 2021, p.6055.
    https://doi.org/10.1038/s41467-021-26239-2
    26Jin-Wook Yoo et al.
    Nature Reviews Drug Discovery, Vol. 10, 2011.
    https://doi.org/10.1038/nrd3499

    2.6.4Immunome-based therapies

    27Alex Waldman et al.
    Nat Rev Immunol, Vol. 20, 2020, p.651.
    https://doi.org/10.1038/s41577-020-0306-5
    28Aisha S. Shariqa et al.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry, Vol. 83, 2018, p.86.
    https://doi.org/10.1016/j.pnpbp.2018.01.003
    29Ramy A. Arnaout et al.
    Frontiers in Immunology, Vol. 12, 2021.
    https://doi.org/10.3389/fimmu.2021.626793
    1Z. Liu
    Nat Rev Earth Environ, Vol. 4, 2023, p.205.
    https://doi.org/10.1038/s43017-023-00406-z.
    2NOAA
    noaa.gov, 2023.
    https://www.noaa.gov/news-release/greenhouse-gases-continued-to-increase-rapidly-in-2022.
    3NASA
    nasa.gov, 2023.
    https://www.nasa.gov/press-release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continues.
    4WMO
    wmo.int, 2023.
    https://library.wmo.int/index.php?lvl=notice_display&id=22272
    5P. Friedlingstein
    Earth Syst. Sci. Data, Vol. 14, 2022, p.4811.
    https://doi.org/10.5194/essd-14-4811-2022.
    6United Nations Climate Change
    unfccc.int.
    https://unfccc.int/process-and-meetings/the-paris-agreement.
    7UNEP
    unep.org, 2022.
    https://www.unep.org/resources/emissions-gap-report-2022.
    8D. J. van de Ven
    Nat. Clim. Chang., Vol. 13, 2023, p.570.
    https://doi.org/10.1038/s41558-023-01661-0.

    3.1.1Negative emissions technologies

    9T. Royal
    royalsociety.org, 2018.
    https://royalsociety.org/topics-policy/projects/greenhouse-gas-removal/.
    10M. Marshall
    bbc.com, 2020.
    https://www.bbc.com/future/article/20200521-planting-trees-doesnt-always-help-with-climate-change.
    11N. Li
    Journal of CO2 Utilization, Vol. 65, 2022, p.102237.
    https://doi.org/10.1016/j.jcou.2022.102237.

    3.1.2Renewable energy

    12H. Ritchie
    ourworldindata.org, 2022.
    https://ourworldindata.org/renewable-energy.
    13IEA
    iea.org.
    https://www.iea.org/reports/renewable-electricity
    14J. Jager
    wri.org, 2021.
    https://www.wri.org/insights/growth-renewable-energy-sector-explained.
    15IRENA
    irena.org, 2021.
    https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.
    16P. Nayak
    Nat Rev Mater, Vol. 4, 2019, p.269.
    https://doi.org/10.1038/s41578-019-0097-0.
    17A. Vaughn
    newscientist.com.
    https://www.newscientist.com/article/mg24933200-400-a-hydrogen-fuel-revolution-is-coming-heres-why-we-might-not-want-it/.
    18P. Ball
    scientificamerican.com, 2023.
    https://www.scientificamerican.com/article/what-is-the-future-of-fusion-energy/.
    19E. Commission
    European Commission, 2023.
    https://research-and-innovation.ec.europa.eu/system/files/2023-04/ec_rtd_eu-smr-declaration-2030.pdf
    20IEA
    iea.org, 2022.
    https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security
    21R. Wiser
    Nat Energy, Vol. 6, 2021, p.555.
    https://doi.org/10.1038/s41560-021-00810-z.

    3.1.3Hard-to-abate emissions

    22M. Martínez-Álvaro
    Commun Biol, Vol. 5, 2022, p.350.
    https://doi.org/10.1038/s42003-022-03293-0.
    23A. Jasińska
    Energies, Vol. 16, 2023, p.3885.
    https://doi.org/10.3390/en16093885.
    24Material Economics
    2019.
    https://materialeconomics.com/latest-updates/industrial-transformation-2050
    25C. Maldonado
    Energy Procedia, Vol. 120, 2017, p.120.
    https://doi.org/10.1016/j.egypro.2017.07.160.
    26E. Mathieu, H. Ritchie
    ourworldindata.org, 2022.
    https://ourworldindata.org/vegetarian-vegan.
    27D. Timmons, R. Terwel
    Journal of Cleaner Production, Vol. 369, 2022, p.133097.
    https://doi.org/10.1016/j.jclepro.2022.133097

    3.1.4Energy Demand

    28J. Barrett
    Centre for Research into Energy Demand Solutions,, 2021.
    https://www.creds.ac.uk/publications/the-role-of-energy-demand-reduction-in-achieving-net-zero-in-the-uk/.
    29IEA
    iea.org, 2021.
    https://www.iea.org/reports/net-zero-by-2050.
    30IEA
    iea.org.
    https://www.iea.org/reports/buildings.
    31A. Fernandez
    iea.org, 2021.
    https://www.iea.org/articles/net-zero-by-2050-hinges-on-a-global-push-to-increase-energy-efficiency.
    32IEA
    iea.org, 2021.
    https://www.iea.org/reports/net-zero-by-2050.

    3.2.1Modelling of feedbacks in the Earth system

    1T. Schneider
    Nat. Geosci., Vol. 12, 2019, p.163.
    https://doi.org/10.1038/s41561-019-0310-1.
    2N. J. Fraser, S. A. Cunningham
    Geophysical Research Letters, Vol. 48, 2021.
    https://doi.org/10.1029/2021GL093893
    3G. Carlos
    Frontiers in Marine Science, Vol. 8, 2021.
    https://doi.org/10.3389/fmars.2021.642372.
    4R. Bonnet
    Nat Commun, Vol. 12, 2021, p.6108.
    https://doi.org/10.1038/s41467-021-26370-0.
    5K. R. Miner
    Nat Rev Earth Environ, Vol. 3, 2022, p.55.
    https://doi.org/10.1038/s43017-021-00230-3.

    3.2.2Tipping element modelling and forecasting

    6N. Boers, M. Rypdal
    PNAS, Vol. 118, 2021.
    https://doi.org/10.1073/pnas.2024192118
    7L. E.O.C. Aragoão
    Nat Commun, Vol. 9, 2018, p.536.
    https://doi.org/10.1038/s41467-017-02771-y.
    8T. Oliveira Assis
    Environ. Res. Lett., Vol. 15, 2020, p.104035.
    https://doi.org/10.1088/1748-9326/ab9cfc.
    9K. R. Miner
    Nat Rev Earth Environ, Vol. 3, 2022, p.55.
    https://doi.org/10.1038/s43017-021-00230-3.
    10S. Wang
    Reviews of Geophysics, Vol. 61, 2023.
    https://doi.org/10.1029/2021RG000757.

    3.2.3Interactions between earth systems

    11D. D. Baldocchi
    Glob Change Biol., Vol. 26, 2020, p.242.
    https://doi.org/10.1111/gcb.14807.
    12R. Knox
    ESS Open Archive, 2023.
    https://doi.org/10.22541/essoar.167810418.80767445/v1.
    13T. M. Lenton
    Nat. Sustain., 2023.
    https://doi.org/10.1038/s41893-023-01132-6.
    14S. Resilience
    https://www.stockholmresilience.org/research/planetary-boundaries/the-nine-planetary-boundaries.html.
    15J. Rockström
    Nature, Vol. 461, 2009, p.472.
    https://doi.org/10.1038/461472a.
    16L. Wang-Erlandsson
    Nat. Rev. Earth. Environ., Vol. 3, 2022, p.380.
    https://doi.org/10.1038/s43017-022-00287-8.

    3.2.4Model intercomparison

    17R. Döscher
    Geoscientific Model Development Discussions, 2021, p.1.
    https://doi.org/10.5194/gmd-15-2973-2022.
    18Program for Climate Model Diagnosis and Intercomparison
    2022.
    https://pcmdi.llnl.gov/index.html.
    19Z. Hausfather
    Nature 605: 26 (2022), Vol. 605, 2022, p.26.
    https://doi.org/10.1038/d41586-022-01192-2.

    3.3.1Ecosystem-level Genetic Modification

    5Leah Shaffer
    Proceedings of the National Academy of Sciences, Vol. 117, 2020, p.32823.
    https://doi.org/10.1073/pnas.2024033117
    6Ewen Callaway
    Nature , Vol. 560, 2018, p.16.
    https://doi.org/10.1038/d41586-018-05814-6
    7Neil E. Hoffman
    Proceedings of the National Academy of Sciences, Vol. 118, 2021.
    https://doi.org/10.1073/pnas.2004841118
    8S. Torti et al.
    Nature Plants, Vol. 7, 2021, p.159.
    https://doi.org/10.1038/s41477-021-00851-y

    3.3.2Alternative Proteins

    9Zafer Bashi et al.
    McKinsey, 43693.
    https://www.mckinsey.com/industries/agriculture/our-insights/alternative-proteins-the-race-for-market-share-is-on
    10M. C. Onwezen et al.
    Appetite, Vol. 159, 2021, p.105058.
    https://doi.org/10.1016/j.appet.2020.105058
    11Nicolas Treich
    Environmental and Resource Economics, Vol. 79, 2021, p.33.
    https://doi.org/10.1007/s10640-021-00551-3

    3.3.3Resilient Farming

    12Achim Walter et al.
    Proceedings of the National Academy of Sciences, Vol. 114, 2017, p.6148.
    https://doi.org/10.1073/pnas.1707462114
    13Rodrigo García et al.
    Computers and Electronics in Agriculture, Vol. 179, 2020, p.105826.
    https://doi.org/10.1016/j.compag.2020.105826.
    14F. Leippert et al.
    Food and Agriculture Organization of the United Nations, 2020.
    https://doi.org/10.4060/cb0438en

    3.3.4Personalised Nutrition

    15V. Saroja Voruganti
    Current Genetic Medicine Reports, Vol. 6, 2018, p.98.
    https://doi.org/10.1007/s40142-018-0143-z
    16Jose M. Ordovas et al.
    BMJ, Vol. 361, 2018.
    https://doi.org/10.1136/bmj.k2173
    17Juliane R. Sempionatto et al.
    ACS Sensors, Vol. 6, 2021, p.1745.
    https://doi.org/10.1021/acssensors.1c00553
    1Gil Denis
    Acta Astronautica, Vol. 137, 2017, p.415.
    https://doi.org/10.1016/j.actaastro.2017.04.034
    2Theodore J. Muelhaupt et al.
    Journal of Space Safety Engineering, Space Traffic Management and Space Situational Awareness, Vol. 6, 2019, p.80.
    https://doi.org/10.1016/j.jsse.2019.05.007
    3Martin Sudmanns et al.
    International Journal of Digital Earth, Vol. 13, 2020, p.832.
    https://doi.org/10.1080/17538947.2019.1585976
    4
    https://www.govtrack.us/congress/bills/114/hr1508/text
    5
    http://space-agency.public.lu/en/space-resources/the-initiative.html
    6
    https://www.esric.lu

    3.4.1Earth Orbit

    13
    https://www.unoosa.org/oosa/osoindex/index.jspx?lf_id=
    14
    https://www.unoosa.org/oosa/osoindex/index.jspx?lf_id=
    15
    https://www.unoosa.org/oosa/osoindex/index.jspx?lf_id=
    16Russo Donovan, Eric Rosenbaum
    CNBC, 172019.
    https://www.cnbc.com/2019/03/15/china-plans-a-solar-power-play-in-space-that-nasa-abandoned-long-ago.html
    17
    KPMG, 2020, p.92.
    https://home.kpmg/au/en/home/insights/2020/05/30-voices-on-2030-future-of-space.html
    18
    ESA.
    https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Sentinel_Expansion_missions
    19Kirsty Needham
    The Sydney Morning Herald, 152019.
    https://www.smh.com.au/world/asia/plans-for-first-chinese-solar-power-station-in-space-revealed-20190214-p50xtg.html
    20
    ESA.
    https://www.esa.int/Safety_Security/Space_Debris/Analysis_and_prediction
    21DJ Kessler, BG Cour-Palais
    Journal of Geophysical Research, Vol. 83, 1978, p.2637.
    doi:10.1029/JA083iA06p02637

    3.4.2The Moon

    22Joey Roulette
    The Verge, 102021.
    https://www.theverge.com/2021/8/10/22618275/nasa-spacesuits-delay-inspector-general-report-2024-artemis
    23
    European Commission, 2021.
    https://ec.europa.eu/info/news/focus-fusion-power-and-iter-project-2021-mai-17_en
    24Harry Jones
    48th International Conference on Environmental Systems, 2018.
    https://ttu-ir.tdl.org/bitstream/handle/2346/74082/ICES_2018_81.pdf
    25Michael Sheetz
    CNBC, 162021.
    https://www.cnbc.com/2021/04/16/spacex-sole-winner-in-nasas-hls-moon-lander-program-report.html
    26
    NASA.
    https://www.nasa.gov/specials/artemis/index.html
    27
    UN Convention on Biological Diversity.
    https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf
    28John FH Thompson, Jowitt, Simon M., Gavin M. Mudd
    Communications Earth & Environment, Vol. 1, 2020, p.1.
    https://doi.org/10.1038/s43247-020-0011-0
    29Ugo Bardi, Rolf Jakobi, Hiroshan Hettiarachchi
    Biophysical Economics and Resource Quality, Vol. 1, 2016.
    https://doi.org/10.1007/s41247-016-0004-x
    30Philip T. Metzger, Jacob Smith, John E. Lane
    Journal of Geophysical Research: Planets , Vol. 116, 2011.
    https://doi.org/10.1029/2010JE003745
    31Philip T Metzger et al.
    International Conference on Case Histories in Geotechnical Engineering, Vol. 1, 2008.
    https://scholarsmine.mst.edu/icchge/6icchge/session10/1
    32
    NASA, 2013.
    http://www.nasa.gov/mission_pages/LADEE/news/lunar-atmosphere.html

    3.4.3Asteroid Belt

    33T. E. Graedel et al.
    Proceedings of the National Academy of Sciences, Vol. 112, 2013, p.6295.
    https://doi.org/10.1073/pnas.1312752110
    34National Research Council
    National Academies Press, 2008.
    35Matthias Willbold, Tim Elliott, Stephen Moorbath
    Nature, Vol. 477, 2011, p.195.
    https://doi.org/10.1038/nature10399
    36John Brophy et al.
    IEEE Aerospace Conference, 2012.
    https://doi.org/10.1109/AERO.2012.6187031
    37Andrew Glester
    Physics World, 112018.
    https://physicsworld.com/a/the-asteroid-trillionaires/
    38Xiaozhi Lim
    Discover, 1620.
    https://www.discovermagazine.com/planet-earth/the-world-is-running-out-of-elements-and-researchers-are-looking-in-unlikely
    39Jeff Foust
    Space News, 219.
    https://spacenews.com/deep-space-industries-acquired-by-bradford-space/
    40Jeff Foust
    Space News, 3118.
    https://spacenews.com/asteroid-mining-company-planetary-resources-acquired-by-blockchain-firm/
    41Emily Osterloff
    Natural History Museum.
    https://www.nhm.ac.uk/discover/how-an-asteroid-caused-extinction-of-dinosaurs.html
    42Yuko Kawaguchi et al.
    Frontiers in Microbiology, Vol. 11, 2020, p.2050.
    https://doi.org/10.3389/fmicb.2020.02050
    43Kristín K. Ragnarsdóttir
    Nature Geoscience, Vol. 1, 2008, p.720.
    https://doi.org/10.1038/ngeo302
    44Martin Elvis
    Asteroids (Springer), 2013, p.81.
    https://doi.org/10.1007/978-3-642-39244-3_4
    45Steven A. Curtis et al.
    Proceedings of the Third International Workshop on Satellite Constellations and Formation Flying, 2003, p.24.
    https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.2545&rep=rep1&type=pdf
    46COSPAR Panel on Planetary Protection
    Space Resources Today, Vol. 208, 2020.
    https://cosparhq.cnes.fr/assets/uploads/2020/07/PPPolicyJune-2020_Final_Web.pdf

    3.4.4Mars

    47Elizabeth Howell
    space.com, 821.
    https://www.space.com/13558-historic-mars-missions.html
    48
    https://u.ae/en/more/uae-future/2030-2117
    49Mike Brown
    inverse.com, 32021.
    https://www.inverse.com/innovation/mars-city-spacex-story
    50Mike Wall
    space.com, 22021.
    https://www.space.com/spacex-launch-astronauts-mars-2024
    51Hanneke Weitering
    space.com, 172020.
    https://www.space.com/spacex-starship-first-mars-trip-2024
    52David S. F. Portree
    wired.com, 82012.
    https://www.wired.com/2012/08/mars-in-1995-1980-1981/
    53
    aljazeera.com, 242021.
    https://www.aljazeera.com/news/2021/6/24/china-plans-for-first-manned-mission-to-mars-in-2033
    1Beatrice Crona et al.
    Environmental Research Science, Vol. 16, 2021, p.63005.
    https://iopscience.iop.org/article/10.1088/1748-9326/ac02ed/meta
    2
    The Royal Society, 2010.
    https://www.aaas.org/sites/default/files/New_Frontiers.pdf
    3UN Global Compact
    2020.
    https://unglobalcompact.org/library/5742

    3.5.1Harnessing Ocean Biodiversity

    8R. Blasiak et al.
    Nature Sustainability , Vol. 3, 2020, p.588.
    https://doi.org/10.1038/s41893-020-0522-9
    9Miguel C. Leal et al.
    Proceedings of the National Academy of Sciences, Vol. 117, 2020, p.24165.
    https://doi.org/10.1073/pnas.2007610117
    10Luis R. Vieira, Fernando Morgado
    Affordable and Clean Energy (Springer), 2020.
    https://doi.org/10.1007/978-3-319-71057-0_117-1

    3.5.2Transition Ecosystems

    11Romain Hugonnet et al.
    Nature, Vol. 592, 2021, p.726.
    https://doi.org/10.1038/s41586-021-03436-z
    12Jonathan Watts
    Guardian, 292021.
    http://www.theguardian.com/environment/2021/apr/29/world-lose-glacier-ice-climate-targets
    13Junaid Furhan
    Journal of Genetic Engineering and Biotechnology, Vol. 18, 2020, p.36.
    https://doi.org/10.1186/s43141-020-00053-7

    3.5.3Repairing the Ocean

    14Reniel B. Cabral et al.
    Proceedings of the National Academy of Sciences, Vol. 117, 2020, p.28134.
    https://doi.org/10.1073/pnas.2000174117
    15Ove Hoegh-Guldberg et al.
    oceanpanel.org, 2019.
    https://oceanpanel.org/sites/default/files/2019-10/HLP_Report_Ocean_Solution_Climate_Change_final.pdf
    16Ramaitha Al Busaidi
    World Economic Forum, 202018.
    https://www.weforum.org/agenda/2018/09/5-ways-to-guarantee-sustainable-aquaculture/
    17Terry P. Hughes et al.
    Nature , Vol. 543, 2017, p.373.
    https://doi.org/10.1038/nature21707
    18Karine Kleinhaus
    Frontiers in Marine Science, Vol. 7, 2020.
    https://doi.org/10.3389/fmars.2020.00090
    19Manuel González-Rivero et al.
    Remote Sensing, Vol. 12, 2020, p.489.
    https://doi.org/10.3390/rs12030489
    20Lisa Boström-Einarsson et al.
    PLOS ONE, Vol. 15, 2020, p.226631.
    https://doi.org/10.1371/journal.pone.0226631

    3.5.4Improved Ocean Observation

    21
    https://seabed2030.org/
    22Runlong Miao, Shuo Pang, Dapeng Jiang
    Journal of Marine Science and Application, Vol. 18, 2019, p.343.
    https://doi.org/10.1007/s11804-019-00097-3
    23Jongeun Choi, Mahdi Jadaliha
    IEEE Transactions on Control Systems Technology, Vol. 21, 2013, p.899.
    https://doi.org/10.1109/TCST.2012.2190070
    2
    IPCC, Cambridge, United Kingdom and New York, NY, USA, p.3.
    https://doi.org/10.1017/9781009157896.001
    3L. Cao et al.
    Geophys Res Lett, Vol. 44, 2017, p.7429.
    https://doi.org/10.1002/2017GL074281
    4C2G
    https://www.c2g2.net/intergovernmental-panel-on-climate-change/
    5B. Kravitz, D.G. MacMartin
    Nat Rev Earth Environ, Vol. 1, 2020, p.6475.
    https://doi.org/10.1038/s43017-019-0004-7

    3.6.1Stratospheric aerosol injection

    10D.E. Parker et al.
    Int J Climatol, Vol. 16, 1996, p.487.
    https://doi.org/10.1002/(SICI)1097-0088(199605)16:5<487::AID-JOC39>3.0.CO;2-J
    11P. Irvine et al.
    Nat Clim Change, Vol. 9, 2019, p.295299.
    https://doi.org/10.1038/s41558-019-0398-8
    12B. Kravitz et al.
    Environmental Research Letters, Vol. 9, 2014, p.74013.
    https://doi.org/10.1088/1748-9326/9/7/074013
    13S. Osaka
    https://grist.org/science/who-gets-to-decide-if-we-study-solar-geoengineering-after-the-scopex-project-canceled/.
    14W. Smith, G. Wagner
    Environmental Research Letters, Vol. 13, 2018, p.124001.
    https://doi.org/10.1088/1748-9326/aae98d
    15W. Smith
    Environmental Research Letters, Vol. 15, 2020, p.114004.
    https://doi.org/10.1088/1748-9326/aba7e7

    3.6.2Cloud engineering

    16G. Cooper et al.
    Phil Trans R Soc A, Vol. 372, 2014, p.2031.
    https://doi.org/10.1098/rsta.2014.0055
    17G. Cooper et al.
    International Journal of Geosciences, Vol. 4, 2013, p.78.
    http://dx.doi.org/10.4236/ijg.2013.41009
    18D.L. Mitchell, W. Finnegan
    Environ Res Lett, Vol. 4, 2009, p.45102.
    https://doi.org/10.1088/1748-9326/4/4/045102
    19L. Duan et al.
    Journal of Geophysical Research: Atmospheres, Vol. 123, 2018, p.11.
    https://doi.org/10.1029/2018JD029034
    20J. Latham et al.
    Atmos Sci Lett, Vol. 14, 2013, p.214.
    https://doi.org/10.1002/asl2.442
    21J. Tollefson
    Nature, Vol. 596, 2021, p.476.
    https://doi.org/10.1038/d41586-021-02290-3
    22L. Ahlm et al.
    Atmos. Chem. Phys., Vol. 17, 2017, p.13071.
    https://doi.org/10.5194/acp-17-13071-2017

    3.6.3Terrestrial solar radiation modification

    23S.I. Seneviratne et al.
    Nature Geosci, Vol. 11, 2018, p.88.
    https://doi.org/10.1038/s41561-017-0057-5
    24K.W. Oleson et al.
    Geophys Res Lett, Vol. 37, 2010, p.3701.
    https://doi.org/10.1029/2009GL042194
    25L. Genesio et al.
    Glob Change Biol, Vol. 27, 2021, p.959.
    https://doi.org/10.1111/gcb.15470
    26K. Zimmer
    BBC Future.
    https://www.bbc.com/future/article/20200923-could-geoengineering-save-the-arctic-sea-ice

    3.6.4Space-based solar radiation modification

    27J.T. Early
    Journal of the British Interplanetary Society, Vol. 42, 1989, p.567.
    28R. Angel
    Proceedings of the National Academy of Sciences, Vol. 103, 2006, p.17184.
    https://doi.org/10.1073/pnas.0608163103
    29J-P. Sánchez, C.R. McInnes
    PLoS ONE, Vol. 10, 2015, p.136648.
    https://doi.org/10.1371/journal.pone.0136648
    30C.R. McInnes
    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, 2010, p.571.
    https://doi.org/10.1243/09544062JMES1439
    31C.M Baum
    Vol. 158, 2022, p.112179.
    https://doi.org/10.1016/j.rser.2022.112179
    1Geneva: World Health Organization
    2021.
    https://www.who.int/publications/i/item/9789240040496.
    2W.A. Stolk et al.
    PLoS Negl Trop Dis, Vol. 10, 2016, p.4560.
    https://doi.org/10.1371/journal.pntd.0004560
    3J. Rocklöv, R. Dubrow
    Nat Immun, Vol. 21, 2020, p.479.
    https://doi.org/10.1038/s41590-020-0648-y
    4National Academies of Sciences, Engineering and Medicine
    2020.
    https://doi.org/10.17226/25887

    3.7.1Pathogen biology

    11P. Ball
    Nature, Vol. 589, 2021, p.16.
    https://doi.org/10.1038/d41586-020-03626-1
    12P. Rosby
    https://www.bbc.co.uk/news/health-56858158.
    13H. Feldman et al.
    N Engl J Med, Vol. 382, 2020, p.1832.
    https://doi.org/10.1056/NEJMra1901594
    14K. Zhou et al.
    Vaccines, Vol. 9, 2021, p.1004.
    https://doi.org/10.3390/vaccines9091004
    15J.W. Park et al.
    Int J Biol Sci, Vol. 17, 2021, p.1446.
    https://dx.doi.org/10.7150/ijbs.59233
    16M. Michelen et al.
    BMJ Global Health, Vol. 6, 2021, p.5427.
    http://dx.doi.org/10.1136/bmjgh-2021-005427

    3.7.2Zoonotic disease

    3.7.3Vector control

    17C. Cansado-Utrilla et al.
    Microbiome, Vol. 9, 2021, p.11.
    https://doi.org/10.1186/s40168-021-01073-2
    18E. Waltz
    Nature, Vol. 593, 2021, p.175.
    https://doi.org/10.1038/d41586-021-01186-6
    19H.A. Flores, S.L. O’Neill
    Nat Rev Microbiol, Vol. 16, 2018, p.508.
    https://doi.org/10.1038/s41579-018-0025-0
    20A. Utarini et al.
    N Engl J Med, Vol. 384, 2021, p.2177.
    https://doi.org/10.1056/NEJMoa2030243
    21J. Zinsstag et al.
    Infect Dis Poverty, Vol. 9, 2020, p.140.
    https://doi.org/10.1186/s40249-020-00757-5
    22Y. Osman et al.