Use the future to build the present
Quantum Revolution & Advanced AI
Comment
Stakeholder Type
,
1Quantum Revolution& Advanced AI2HumanAugmentation3Eco-Regeneration& Geo-Engineering4Science& Diplomacy1.11.21.31.42.12.22.32.43.13.23.33.43.54.14.24.34.44.5HIGHEST ANTICIPATIONPOTENTIALAdvancedArtificial IntelligenceQuantumTechnologiesBrain-inspiredComputingBiologicalComputingCognitiveEnhancementHuman Applications of Genetic EngineeringRadical HealthExtensionConsciousnessAugmentation DecarbonisationWorldSimulationFuture FoodSystemsSpaceResourcesOceanStewardshipComplex Systems forSocial EnhancementScience-basedDiplomacyInnovationsin EducationSustainableEconomicsCollaborativeScience Diplomacy
1Quantum Revolution& Advanced AI2HumanAugmentation3Eco-Regeneration& Geo-Engineering4Science& Diplomacy1.11.21.31.42.12.22.32.43.13.23.33.43.54.14.24.34.44.5HIGHEST ANTICIPATIONPOTENTIALAdvancedArtificial IntelligenceQuantumTechnologiesBrain-inspiredComputingBiologicalComputingCognitiveEnhancementHuman Applications of Genetic EngineeringRadical HealthExtensionConsciousnessAugmentation DecarbonisationWorldSimulationFuture FoodSystemsSpaceResourcesOceanStewardshipComplex Systems forSocial EnhancementScience-basedDiplomacyInnovationsin EducationSustainableEconomicsCollaborativeScience Diplomacy

Frontier Issue:

1Quantum Revolution & Advanced AI

Our lives are intricately intertwined with the flow of data, and the information revolution has transformed the way we live and work, as well as our understanding of our environment. However, the impact of today’s information technology could nonetheless be minor compared to the consequences of innovations coming over the horizon.
1Quantum Revolution& Advanced AI2HumanAugmentation3Eco-Regeneration& Geo-Engineering4Science& Diplomacy1.11.21.31.42.12.22.32.43.13.23.33.43.54.14.24.34.44.5HIGHEST ANTICIPATIONPOTENTIALAdvancedArtificial IntelligenceQuantumTechnologiesBrain-inspiredComputingBiologicalComputingCognitiveEnhancementHuman Applications of Genetic EngineeringRadical HealthExtensionConsciousnessAugmentation DecarbonisationWorldSimulationFuture FoodSystemsSpaceResourcesOceanStewardshipComplex Systems forSocial EnhancementScience-basedDiplomacyInnovationsin EducationSustainableEconomicsCollaborativeScience Diplomacy

Associated Emerging Topics:

1.2Quantum Technologies
Systems made up of subatomic particles like electrons and photons are subject to physical laws unlike the ones we are familiar with. Quantum technologies make use of two phenomena unique to such quantum systems. One is “superposition”, where a quantum entity’s physical properties remain undefined until they are measured, creating an entirely novel mechanism for encoding information. The other is “entanglement”, where quantum entities have intertwined properties that mean action on one entity instantly affect the outcome of future actions on its entangled twin, even when they are physically separated. 
1.4Biological Computing
The component parts of biology often take a molecular input, carry out some process using molecular or cellular “machinery”, and output a related molecule or set of molecules. This has clear parallels with the way silicon-based computing works: take some input, transform it using some arrangement of Boolean logic gates, and produce some output. This observation has seeded the field of biological computing, or biocomputing, in which researchers attempt to modify or build biological systems to perform computing-like routines.

Related Content: